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LEARNING SPIKE TIMING PRECISION

BACKGROUND

1. Field

Certain aspects of the present disclosure generally relate to
neural networks and, more particularly, to learning and rep-
resenting uncertainty in neural spike timing.

2. Background

An artificial neural network is a mathematical or compu-
tational model composed of an interconnected group of arti-
ficial neurons (i.e., neuron models). Artificial neural networks
may be derived from (or at least loosely based on) the struc-
ture and/or function of biological neural networks, such as
those found in the human brain. Because artificial neural
networks can infer a function from observations, such net-
works are particularly useful in applications where the com-
plexity of the task or data makes designing this function by
hand impractical.

One type of artificial neural network is the spiking neural
network, which incorporates the concept of time into its oper-
ating model, as well as neuronal and synaptic state, thereby
increasing the level of realism in this type of neural simula-
tion. Spiking neural networks are based on the concept that
neurons fire only when a membrane potential reaches a
threshold. When a neuron fires, it generates a spike that trav-
els to other neurons which, in turn, raise or lower their mem-
brane potentials based on this received spike.

SUMMARY

Certain aspects of the present disclosure generally relate to
learning or determining delays between neuron models so
that the uncertainty in input spike timing is accounted for in
the margin of time between a delayed pre-synaptic input spike
and a post-synaptic spike. In this manner, a neural network
can correctly match patterns (even in the presence of signifi-
cant jitter) and correctly distinguish between different noisy
patterns.

Certain aspects of the present disclosure provide a method
of learning in a neural network. The method generally
includes determining an uncertainty associated with a first
pre-synaptic spike time of a first neuron model for a pattern to
be learned; and determining a delay based on the uncertainty,
such that the delay added to a second pre-synaptic spike time
of the first neuron model results in a causal margin of time
between the delayed second pre-synaptic spike time and a
post-synaptic spike time of a second neuron model. For cer-
tain aspects, the method may further comprise adding the
delay to the second pre-synaptic spike time of the first neuron
model, wherein the second pre-synaptic spike time is subse-
quent to the first pre-synaptic spike time

Certain aspects of the present disclosure provide an appa-
ratus for learning in a neural network. The apparatus gener-
ally includes a processing system configured to determine an
uncertainty associated with a first pre-synaptic spike time of
a first neuron model for a pattern to be learned; and to deter-
mine a delay based on the uncertainty, such that the delay
added to a second pre-synaptic spike time of the first neuron
model results in a causal margin of time between the delayed
second pre-synaptic spike time and a post-synaptic spike time
of'a second neuron model. For certain aspects, the processing
system is further configured to add the delay to the second
pre-synaptic spike time of the first neuron model, wherein the
second pre-synaptic spike time is subsequent to the first pre-
synaptic spike time.
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Certain aspects of the present disclosure provide an appa-
ratus for learning in a neural network. The apparatus gener-
ally includes means for determining an uncertainty associated
with a first pre-synaptic spike time of a first neuron model for
a pattern to be learned; and means for determining a delay
based on the uncertainty, such that the delay added to a second
pre-synaptic spike time of the first neuron model results in a
causal margin of time between the delayed second pre-syn-
aptic spike time and a post-synaptic spike time of a second
neuron model.

Certain aspects of the present disclosure provide a com-
puter program product for learning in a neural network. The
computer program product generally includes a computer-
readable medium having instructions executable to determine
an uncertainty associated with a first pre-synaptic spike time
of a first neuron model for a pattern to be learned; and to
determine a delay based on the uncertainty, such that the
delay added to a second pre-synaptic spike time of the first
neuron model results in a causal margin of time between the
delayed second pre-synaptic spike time and a post-synaptic
spike time of a second neuron model.

Certain aspects of the present disclosure provide a method
of neural learning. The method generally includes determin-
ing a delayed pre-synaptic spike time by delaying a pre-
synaptic input spike by a first time delay, determining an
uncertainty factor associated with the delayed pre-synaptic
spike time, and adjusting the first time delay based on the
uncertainty factor.

Certain aspects of the present disclosure provide an appa-
ratus for neural learning. The apparatus generally includes a
processing system configured to determine a delayed pre-
synaptic spike time by delaying a pre-synaptic input spike by
a first time delay, to determine an uncertainty factor associ-
ated with the delayed pre-synaptic spike time, and to adjust
the first time delay based on the uncertainty factor.

Certain aspects of the present disclosure provide an appa-
ratus for neural learning. The apparatus generally includes
means for determining a delayed pre-synaptic spike time by
delaying a pre-synaptic input spike by a first time delay,
means for determining an uncertainty factor associated with
the delayed pre-synaptic spike time, and means for adjusting
the first time delay based on the uncertainty factor.

Certain aspects of the present disclosure provide a com-
puter-program product for neural learning. The computer-
program product generally includes a computer-readable
medium having instructions executable to determine a
delayed pre-synaptic spike time by delaying a pre-synaptic
input spike by a first time delay, to determine an uncertainty
factor associated with the delayed pre-synaptic spike time,
and to adjust the first time delay based on the uncertainty
factor.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above-recited features of
the present disclosure can be understood in detail, a more
particular description, briefly summarized above, may be had
by reference to aspects, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only certain typical aspects of
this disclosure and are therefore not to be considered limiting
of its scope, for the description may admit to other equally
effective aspects.

FIG. 1 illustrates an example network of neurons in accor-
dance with certain aspects of the present disclosure.
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FIG. 2 illustrates a post-synaptic neuron having reinforced
connections to inputs from several pre-synaptic neurons with
various delays, in accordance with certain aspects of the
present disclosure.

FIG. 3 illustrates jitter in the delayed pre-synaptic spikes of
FIG. 2, showing margins (relative to the post-synaptic spike
time) that are both too small and needlessly large compared to
the jitter, in accordance with certain aspects of the present
disclosure.

FIG. 4 illustrates using adjusted delays, such that the mar-
gins are commensurate with uncertainty, in accordance with
certain aspects of the present disclosure.

FIG. 5 illustrates example probability density functions
(PDFs) of jitter for the pre-synaptic spike and for the delayed
pre-synaptic spike, in accordance with certain aspects of the
present disclosure.

FIG. 6 illustrates an example scheme for adapting delay, in
accordance with certain aspects of the present disclosure.

FIG. 7 is a flow diagram of example operations for deter-
mining a delay based on an uncertainty associated with a
pre-synaptic spike time of a neuron model, in accordance
with certain aspects of the present disclosure.

DETAILED DESCRIPTION

Various aspects of the disclosure are described more fully
hereinafter with reference to the accompanying drawings.
This disclosure may, however, be embodied in many different
forms and should not be construed as limited to any specific
structure or function presented throughout this disclosure.
Rather, these aspects are provided so that this disclosure will
be thorough and complete, and will fully convey the scope of
the disclosure to those skilled in the art. Based on the teach-
ings herein one skilled in the art should appreciate that the
scope of the disclosure is intended to cover any aspect of the
disclosure disclosed herein, whether implemented indepen-
dently of or combined with any other aspect of the disclosure.
For example, an apparatus may be implemented or a method
may be practiced using any number of the aspects set forth
herein. In addition, the scope of the disclosure is intended to
cover such an apparatus or method which is practiced using
other structure, functionality, or structure and functionality in
addition to or other than the various aspects of the disclosure
set forth herein. It should be understood that any aspect of the
disclosure disclosed herein may be embodied by one or more
elements of a claim.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any aspect described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects.

Although particular aspects are described herein, many
variations and permutations of these aspects fall within the
scope of the disclosure. Although some benefits and advan-
tages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits,
uses or objectives. Rather, aspects of the disclosure are
intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of
which are illustrated by way of example in the figures and in
the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of
the disclosure rather than limiting, the scope of the disclosure
being defined by the appended claims and equivalents
thereof.

An Example Neural System

FIG. 1 illustrates an example neural system 100 with mul-
tiple levels of neurons in accordance with certain aspects of
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the present disclosure. The neural system 100 may comprise
a level 102 of neurons connected to another level 106 of
neurons though a network of synaptic connections 104. For
simplicity, only two levels of neurons are illustrated in FIG. 1,
although fewer or more levels of neurons may exist in a
typical neural system.

As illustrated in FIG. 1, each neuron in the level 102 may
receive an input signal 108 that may be generated by a plu-
rality of neurons of a previous level (not shownin FIG. 1). The
signal 108 may represent an input (e.g., an input current) to
the level 102 neuron. Such inputs may be accumulated on the
neuron membrane to charge a membrane potential. When the
membrane potential reaches its threshold value, the neuron
may fire and generate an output spike to be transferred to the
next level of neurons (e.g., the level 106).

The transfer of spikes from one level of neurons to another
may be achieved through the network of synaptic connections
(or simply “synapses”) 104, as illustrated in FIG. 1. The
synapses 104 may receive output signals (i.e., spikes) from
the level 102 neurons (pre-synaptic neurons relative to the
synapses 104). For certain aspects, these signals may be
scaled according to adjustable synaptic weights w, Y |
, WD (where P is a total number of synaptic connections
between the neurons oflevels 102 and 106). For other aspects,
the synapses 104 may not apply any synaptic weights. Fur-
ther, the (scaled) signals may be combined as an input signal
of'eachneuron inthe level 106 (post-synaptic neurons relative
to the synapses 104). Every neuron in the level 106 may
generate output spikes 110 based on the corresponding com-
bined input signal. The output spikes 110 may be then trans-
ferred to another level of neurons using another network of
synaptic connections (not shown in FIG. 1).

The neural system 100 may be emulated in software or in
hardware (e.g., by an electrical circuit) and utilized in a large
range of applications, such as image and pattern recognition,
machine learning, motor control, and the like. Each neuron
(or neuron model) in the neural system 100 may be imple-
mented as a neuron circuit. The neuron membrane charged to
the threshold value initiating the output spike may be imple-
mented, for example, as a capacitor that integrates an electri-
cal current flowing through it.

Example Learning of Uncertainty in Neural Spike
Timing

Learning of spatial-temporal patterns in spiking neural
networks may be achieved with spike-timing-dependent plas-
ticity (STDP) rule and dendritic delays. However, if the spa-
tial-temporal pattern has even slightly varying timing (such as
if some of the spikes are subject to jitter), the ability of a
network to learn the pattern deteriorates or can fail entirely if
the jitter is substantial. Moreover, the network may also mis-
recognize a different pattern (having very large spike timing
differences) as being the same pattern. The reason for these
seemingly very different problems is actually due to the same
underlying cause. The problem is the dendritic delays are
such that the arrival of pre-synaptic spikes at the soma (after
the delay) is not well aligned to the post-synaptic spike time.
STDP reinforces causal input connections and weakens non-
causal input connections, whether they are proximate in time
or not. Thus, the margin or difference in time between when
a pre-synaptic spike arrives at the soma and when the post-
synaptic spike occurs may vary with no relation to the uncer-
tainty in the spike timing. If the margin happens to be small,
even small jitter may change a causal input to a non-causal
input or vice versa. If the margin happens to be large, large
timing differences (such as a different pattern) might be indis-
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tinguishable (e.g., remain causal regardless). As a result,
noisy patterns often cannot be learned, and different patterns
typically cannot be distinguished.

Certain aspects of the present disclosure solve both prob-
lems by addressing the root cause. Certain aspects adapt delay
(e.g., dendritic delay) of a connection to coincide with the
uncertainty associated with the connection input timing. Cer-
tain aspects of the present disclosure determine the uncer-
tainty of a pre-synaptic spike time relative to a pattern and
determine a synaptic (dendritic) delay that aligns the delayed
time of the spike to have a causal margin of time relative to the
post-synaptic spike time. The margin depends on the uncer-
tainty. As a result, neuron models functioning in this manner
can learn patterns with uncertain spike timing and distinguish
patterns with substantially different timing.

The typical spike-timing-dependent plasticity (STDP) rule
effectively adapts a synaptic weight of a synapse connecting
neuron A to neuron B as a function of the time difference
between the pre-synaptic neuron A’s spike time t,,,,, and post-
synaptic neuron B’s spike time t,,., or, without loss of gen-
erality, At=t,,,,,~t,,.. A typical formulation is to increase the
weight (i.e., potentiate the synapse) if the time difference is
positive (pre before post) and decrease the weight (i.e.,
depress the synapse) if the time difference is negative (post
before pre). This is typically done using an exponential decay,
such as the following equation:

Aw= Asign(At)e*‘At‘/Tsign(At)

where T,,,, 1, 1 a time constant and A, ., is a scaling
magnitude, which both typically depend on whether the dif-
ference is positive or negative. It should be evident that the
weight will be increased for causal inputs (positive time dif-
ference) regardless of how large the difference is (within the
order of the time constant). Similarly, the opposite occurs for
non-causal inputs. Thus, if there is no jitter in a pattern of
pre-synaptic spikes, once learning is converged, a neuron may
have reinforced connections to inputs with different delays, as
depicted in FIG. 2.

FIG. 2 illustrates several pre-synaptic neurons 202 con-
nected to a post-synaptic neuron 204. Although eight pre-
synaptic neurons 202 are shown, the present disclosure
applies to any number n of pre-synaptic neurons 202. The
pre-synaptic neurons 202 have various dendritic delays 206,
each representing the delay between receiving a spike at a
dendrite of a particular neuron after a synapse (the “pre-
synaptic spike”) and this spike reaching the soma of the same
neuron (the “delayed pre-synaptic spike™). The delayed pre-
synaptic spike for each of the pre-synaptic neurons 202 is
illustrated with dashed lines in FIG. 2.

In FIG. 2, only reinforced connections are shown. The
dendritic delay 206 for the connections is random but suffi-
ciently small in every case that the pre-synaptic spike occurs
before the post-synaptic spike 210, even considering the den-
dritic delay 206. However, the margin of time between the
delayed pre-synaptic spike and the post-synaptic spike 210
varies randomly, as well. For the first pre-synaptic neuron
202,, this margin is a causal margin 208 because the delayed
pre-synaptic spike occurs before the post-synaptic spike 210.

If a pre-synaptic spike has jitter as illustrated in FIG. 3, this
spike may arrive at the soma at an earlier or later time. If the
spike arrives too late (after the post-synaptic spike 210) the
margin may be insufficient to prevent the weight of the con-
nection from being depressed (weakened) by STDP (i.e.,
“margin too small”). Thus, the neuron may be unable to learn
a pattern with jitter. Moreover, whether or not the neuron can
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learn a spike in a pattern is random because of the random
dendritic delay. In other words, there is little or no depen-
dence on the amount of jitter.

For example, a spike with large jitter might be learned if
there happens to be a large margin (e.g., the fourth pre-
synaptic neuron 202, shaded with the relatively thinner hori-
zontal lines). However, a spike with small jitter might fail to
be learned if there happens to be a small margin (e.g., the
seventh pre-synaptic neuron 202, shaded with the relatively
thicker horizontal lines). Since the margin may have no rela-
tion to the amount of uncertainty, learning of an uncertain
pattern is problematic. First, a pattern with a slight variation
may fail to be learned or failed to be recognized. Second, a
pattern with a large variation (which is actually a different
pattern) may be mistakenly recognized as the same pattern
(i.e., “margin too big”). In FIG. 3, for clarity, the jitter range
is shown only for the delayed spikes (with the exception of the
first input), since the jitter range is of the same extent as that
for the corresponding non-delayed spikes.

Certain aspects of the present disclosure determine den-
dritic delay of a connection to coincide with the uncertainty
associated with the connection input timing. For certain
aspects, the delay is adapted. Alternatively, a synapse with a
particular delay may be selected from among a plurality of
synapses with different delays. Those synapses would have
the same input, but different delays. By selecting from among
them, the effective delay of the input’s spike is changed.

Certain aspects of the present disclosure determine the
uncertainty of a pre-synaptic spike time within a pattern.
Although the uncertainty may be determined directly from
multiple instances of a pattern or from a known parameter, for
certain aspects, the variation in spike timings may be experi-
enced by the neuron across repetitions of the pattern (e.g.,
with jitter) while the delay is being adapted. By adapting the
delay during the exposure to the pattern and learning of syn-
aptic weights, the delay adaptation accounts for the uncer-
tainty observed in the spike timing. In either case, a synaptic
(dendritic) delay is determined which aligns the delayed time
of the spike to have a margin of time relative to the post-
synaptic spike time, as illustrated in FIG. 4. The margin is a
function of the uncertainty so that if uncertainty is large, the
margin is large and vice versa.

As a result, neurons implementing aspects of the present
disclosure can learn patterns with uncertain spike timing and
distinguish patterns with substantially different timing. If a
pattern has uncertain spike timing, the margin resulting from
the adjusted delay will be commensurate with this uncer-
tainty, and thus, the post-synaptic neuron can recognize the
pattern with variance. If a first pattern has particular spike
timing and a second pattern has a different spike timing, then
apost-synaptic neuron selective to the first pattern will have a
margin commensurate with the particular timing of the first
pattern. Therefore, if given the different timing of the second
pattern, that neuron will be able to distinguish the second
from the first because the timing is beyond that associated
with the uncertainty in the first.

Above, jitter is considered in the sense of spike timing
having a range with clear bounds. However, jitter may be
random to the extent one can only describe the jitter as a
probability distribution, such as a Gaussian distribution. For
example, FIG. 5 illustrates an example probability density
function (PDF) 502 ofjitter for the pre-synaptic spike and the
PDF 504 for the delayed pre-synaptic spike, delayed by the
dendritic delay 206. With such probability distributions, the
tail may be large, and one is generally not interested in
accounting for the largest possible variance. Instead, one is
typically interested in having a margin that accounts for a
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particular likelihood of the jitter (e.g., 95%). In that case, the
margin may be commensurate with the cumulative percentile
of the distribution (e.g., 957 percentile). To put this in other
words, a margin is desired that places the probability that the
delayed pre-synaptic spike is out of margin beyond the post-
synaptic spike at a predetermined threshold (e.g., 5%).
Determining Delay Directly

If the uncertainty of a pre-synaptic spike time for inputiis
known, for example if the pre-synaptic spike time has a prob-
ability distribution P{At,}, where At; is time relative to the
post-synaptic spike time (or other pattern reference time),
then the delay T, for that synapse may be determined directly
to achieve a particular margin commensurate with the uncer-
tainty. For example, suppose one wishes to accommodate an
uncertainty on the order of the standard deviation o~=E{

3(At,-AL,)*} of the distribution of At, but no larger. In that
case, a pre-synaptic spike time that is later than the mean A
t,=BE{At,} by an amount equal to the standard deviation of the
distribution may be delayed by an amount T, such that the
delayed pre-synaptic spike time occurs no later than the post-
synaptic spike time (which is the reference in this example,
i.e., 0). Thus,

Al~t,~0,20

For example, if a pre-synaptic spike occurs 10 ms, on
average, prior to the post-synaptic spike, then At=10. Sup-
pose this has a variance of 4 ms, or 0,=2. This indicates a
delay of no more than 8 ms to accommodate that variance in
the pattern. Thus, a method to determine delay directly is
available when the statistics of the pattern are known. In
effect, one may set the delay to achieve any desired probabil-
ity of having the pre-synaptic spike occur before the post-
synaptic spike.

Adapting Delay

As an alternative, one may adapt or determine delay more
indirectly to achieve the desired effect, and this may be per-
formed when the pattern is being observed on-the-fly. Such
delay adaptations may be performed periodically or continu-
ously.

In simplest form, certain aspects of the present disclosure
involve adapting delay as follows:

decrease delay to obtain a larger margin if the pre-synaptic

spike timing is less certain.

increase delay to obtain a smaller margin if the pre-synap-

tic spike timing is more certain.

While the certainty or uncertainty of spike timing may be
determined directly from an ensemble of pattern instances or
as a given parameter, it may also be determined on-the-fly by
estimating uncertainty as different variations of the pattern
are being observed.

As another alternative, the uncertainty may be accounted
for indirectly. For example, uncertainty may be accounted for
as follows:

if, for a given pattern, a delayed pre-synaptic spike occurs

relatively close (or too late) to the post-synaptic spike
time, the uncertainty is determined to be potentially
larger than expected/anticipated, the margin is deter-
mined to be too small, and the margin is increased by an
incremental amount.

if, for a given pattern, a delayed pre-synaptic spike occurs

relatively far in advance of the post-synaptic spike time,
the uncertainty is determined to be potentially smaller
than expected/anticipated, the margin is determined to
be too large, and the margin is decreased by an incre-
mental amount.

The above may be simplified even further into a simple
algorithm which increases delay if the delayed pre-synaptic
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spike occurs substantially before the post-synaptic and
decreases delay otherwise. FIG. 6 shows an example in which
the delay is adapted according to this principle. At first (rep-
etition #1), the initial delay results in a delayed pre-synaptic
spike that is far in advance of the post-synaptic spike. Thus,
the margin is large, and the margin is reduced by a step
increase of the delay (i.e., an incremental delay increase).
However, in the next repetition of the pattern (#2), this par-
ticular pre-synaptic spike occurs later (e.g., due to jitter) and
the delay brings the delayed spike closer to the post-synaptic
spike (a smaller margin). However, since this is not very close
(e.g., is outside a certain margin threshold), so delay is
increased again. At a certain point (repetition #4 in FIG. 6),
the jitter results in a spike that is quite late. As a result, with the
increased delay, the margin is very small (e.g., within the
margin threshold). Thus, the delay is step decreased in an
effort to obtain a safer (i.e., larger) margin. This process is an
ongoing mechanism, so the delay may be continuously adapt-
ing. If the increments of increase and decrease are relatively
small, then the delay may most likely converge to a value that
results in an appropriate margin.

For certain aspects, the algorithm may include a look-
ahead mechanism for determining whether a step delay
increase will cause (a probability of) the delayed spike to be
within the margin threshold (or to occur after the post-synap-
tic spike, such that the delayed spike will be non-causal). If
the result of this look-ahead is true, the delay may not be
increased, or at least may not be increased by the full delay
increment attempted.

For certain aspects, the delay increments may be the same
for both increase and decrease directions, while for other
aspects, the delay increments may be different for the
increase and decrease directions. Furthermore, the delay
increments may change based on previous adjustments (i.e.,
the adjustment history). For example, the delay increments
may get progressively smaller with consecutive delay
increases (or consecutive delay decreases) for certain aspects.
Once the delay adjustment direction changes (i.e., from
increase to decrease or vice versa), the delay increment may
return to its initial, relatively larger value.

A variation on the above is to increase or decrease the delay
by an amount depending on the time difference between pre-
and post-synaptic spikes. For example, if the pre-post (or
post-pre) time is very small, no delay plasticity adjustment is
made; otherwise the delay is adjusted by an amount that is a
function of the time difference and whether this difference is
negative or positive. This may be referred to as the structural
delay plasticity model or temporal plasticity.

Using Indirect Indications of Uncertainty

Alternatively delay may be indirectly determined using
indirect indications of uncertainty in spike timing. For
example, the derivative of the sign of change in weight of a
synapse is a measure of how consistent or inconsistent the
synaptic plasticity mechanism is:

{%sign(Aw(t)) or Aw(n) —Aw(n — 1)

If the weight of a synapse keeps changing in the same
direction (increasing for long-term potentiation (LTP) or
decreasing for long-term depression (L'TD)), then one may
deduce from the shape of the typical STDP curve that the
pre-synaptic spike has a consistent order relative to the post-
synaptic spike (before for LTP and after for LTD). However,
if the weight of a synapse keeps changing in opposite direc-
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tion (i.e., the derivative of the sign is negative), the pre-
synaptic spike is sometimes occurring after the post and
sometimes before, thereby indicating uncertainty to the
extent that the margin is insufficient.

However, this is only one example. Another example is
cumulative weight change, which may be expressed as fol-
lows:

TAw(@B)dr
or

SAw(n)

If the cumulative weight change (or moving average, for
example), is near zero, then LTP and L'TD may be competing,
which suggests the pre-synaptic spike is occurring before and
after the post-synaptic spike (i.e., inconsistently). Thus, one
may again deduce uncertainty to the extent that the margin is
insufficient. However, if the integral weight change is non-
zero (significant negative or positive number), then one may
deduce that the pre-synaptic spike is often (or even always)
occurring in the same order with respect to the post-synaptic
spike (before for positive value, after for negative value).

Accordingly, there are a variety of means to determine
uncertainty based on weight change and thus to adapt the
delay accordingly to achieve a commensurate margin.
Coding Uncertainty in Weights

Connection weight may also be determined based on
uncertainty. Alternatively a combination of connection delay
and weight may be determined based on uncertainty. Gener-
ally, as delay is increased, a synaptic input contribution is
reduced in effect statistically in models that are leaky (e.g.,
leaky-integrate-and-fire (LIF) neuron models). A similar
effect may be achieved by lowering weight for inputs that are
more uncertain or by a combination of increase in delay and
decrease in weight.

Weight may be used as a measure of the signal variance: the
higher the variance, the smaller the weight. That is, one may
separate two components of a signal, using latency (location
of the synapse) to code for the relative spike timing of the
spike pattern, and use the weight to code for the variance of
that feature/input. For certain aspects, the weight may be
determined based on uncertainty (e.g., discounting uncertain
inputs), and the delay may be determined, for example, to
align the relative timing of inputs (e.g., aligning the expected
times of pre-synaptic spikes rather than their uncertainty mar-
gins/bounds).

Relation to Resource Model

The resource model (or “multi-spike neural learning”
model) utilizes a learning method which is more biologically
accurate than independent STDP. In the resource model, a
synaptic weight may be adapted depending on a resource
associated with the synapse, which may be depleted by
weight change and may recover over time. The resource
model also significantly improves temporal pattern learning
in several ways: speed, robustness, diversity, etc.

The concept of the resource model is that there is a shared
resource which modulates weight changes and is in turn
dependent upon weight changes. For this reason, the
resources available for a synaptic weight change are also an
indication of spike timing uncertainty. If the weight has been
changing a lot, resources are used up and take time to recover.
Conversely, if weights are not changing, the resources are
more available for subsequent weight changes. Also, the
closer the delayed pre-synaptic spike is to the post-synaptic
spike, the larger the weight change, and the more resources
are consumed. When on the causal side (pre before post), the
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larger the change/amount of resources consumed, the closer
one is to the limit of the margin.

Generally, with the resource model, LTP and LTD are
cooperative (as opposed to competitive as with independent
STDP). For this reason, when there are low resources, this is
typically a sign of consistent and substantial weight changes.
However, if the resources are high, weight changes are not
occurring as often or by as much, and this may be due to a
large pre-post time difference, indicating the margin may be
larger than necessary.

As a result of the above, one may use resources (or lack
thereof) as an indication for delay adaptation. First, normal
delay adaptation may be applied based on the pre-post time as
described above (e.g., according to the structural delay plas-
ticity model). If one observes pre-before-post by at least some
minimum time, delay may be increased. If one observes post-
before-pre by at least some minimum time, delay may be
decreased. Second, the resource model is applied. However,
the resource model may be linked to the structural delay
plasticity model as follows: if resources are high, there is no
change, but if resources are low, the delay adaptation is
reversed (increasing instead of decreasing and vice versa).

It should be understood that there are variations on this
within the scope of the present disclosure (i.e., adapting delay
based on the resources available for synaptic weight change
(strength modulation)).

Example Operations

FIG. 7 is a flow diagram of example operations 700 for
determining a delay based on an uncertainty associated with
a pre-synaptic spike time of a neuron model, in accordance
with certain aspects of the present disclosure. The operations
700 may be performed in hardware (e.g., by one or more
processing units), in software, or in firmware.

The operations 700 may begin, at 702, by determining an
uncertainty associated with a first pre-synaptic spike time of
afirst neuron model for a pattern to be learned. At 704, a delay
may be determined based on the uncertainty. The delay is
determined such that the delay added to a second pre-synaptic
spike time of the first neuron model results in a causal margin
of time between the delayed second pre-synaptic spike time
and a post-synaptic spike time of a second neuron model. For
certain aspects, determining the delay includes selecting a
synapse with the delay from among a plurality of synapses
with different delays.

According to certain aspects, the operations 700 may fur-
ther include adding the delay to the second pre-synaptic spike
time of the first neuron model. The second pre-synaptic spike
time may be subsequent to the first pre-synaptic spike time.

According to certain aspects, the operations 700 may fur-
ther include determining another uncertainty (i.e., a second
uncertainty) associated with a third pre-synaptic spike time of
a third neuron model for the pattern to be learned. Another
delay (i.e., a second delay) may be determined based on the
other uncertainty (the second uncertainty). The other delay
(the second delay) may be determined such that this other
delay added to a fourth pre-synaptic spike time of the third
neuron model results in a causal margin of time between the
delayed fourth pre-synaptic spike time and the post-synaptic
spike time of the second neuron model. For certain aspects,
the operations 700 may further include adding the other delay
(the second delay) to the fourth pre-synaptic spike time of the
third neuron model. The fourth pre-synaptic spike time may
be subsequent to the third pre-synaptic spike time.

According to certain aspects, the margin is a function of the
uncertainty. The uncertainty may comprise a range of pre-
synaptic spike timing with defined bounds. For certain
aspects, the uncertainty comprises a probability distribution.
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In this case, determining the delay at 704 may include calcu-
lating the delay based on the probability distribution to
achieve a desired probability of having the delayed second
pre-synaptic spike time occur before the post-synaptic spike
time. The uncertainty may include at least one of a synaptic
weight change amount, a derivative of a sign of a synaptic
weight change, or an accumulated synaptic weight change,
for a synapse between the first and second neuron models.

According to certain aspects, determining the uncertainty
at 702 involves determining the uncertainty directly from
multiple instances of the pattern. According to other aspects,
determining the uncertainty at 702 includes observing difter-
ent variations of the pattern. In this case, determining the
delay at 704 may include adjusting the delay based on each of
the observed variations. The first pre-synaptic spike time may
be delayed by a previously determined delay. For certain
aspects, adjusting the delay includes: (1) decreasing the delay
to increase the margin if the post-synaptic spike time occurs
within a first time threshold of the delayed first pre-synaptic
spike time; and (2) increasing the delay to decrease the mar-
gin if the post-synaptic spike time occurs more than a second
time threshold after the delayed first pre-synaptic spike time.
For other aspects, adjusting the delay includes: (1) increasing
the delay to decrease the margin if the delayed first pre-
synaptic spike time occurs substantially before the post-syn-
aptic spike time; and (2) decreasing the delay to increase the
margin if the delayed first pre-synaptic spike time does not
occur substantially before the post-synaptic spike time.

According to certain aspects, the operations 700 may fur-
ther include determining a synaptic weight of a synapse
between the first and second neuron models based on the
uncertainty. For certain aspects, the operations 700 may fur-
ther include using the delay to adjust an expected time of a
pre-synaptic spike for the first neuron model relative to
another expected time of another pre-synaptic spike for a
third neuron model.

According to certain aspects, the operations 700 may fur-
ther include outputting at least one of the uncertainty, the
delay, or the pattern to be learned to a display.

The various operations of methods described above may be
performed by any suitable means capable of performing the
corresponding functions. The means may include various
hardware and/or software component(s) and/or module(s),
including, but not limited to a circuit, an application specific
integrated circuit (ASIC), or processor. Generally, where
there are operations illustrated in figures, those operations
may have corresponding counterpart means-plus-function
components with similar numbering.

For example, the means for displaying may comprise a
display (e.g., a monitor, flat screen, touch screen, and the
like), a printer, or any other suitable means for outputting data
for visual depiction, such as a table, chart, or graph. The
means for processing, means for adding, means for using,
means for aligning, or means for determining may comprise
aprocessing system, which may include one or more proces-
sors or processing units. The means for storing may comprise
a memory or any other suitable storage device (e.g., RAM),
which may be accessed by the processing system.

As used herein, the term “determining” encompasses a
wide variety of actions. For example, “determining” may
include calculating, computing, processing, deriving, inves-
tigating, looking up (e.g., looking up in a table, a database or
another data structure), ascertaining, and the like. Also,
“determining” may include receiving (e.g., receiving infor-
mation), accessing (e.g., accessing data in a memory), and the
like. Also, “determining” may include resolving, selecting,
choosing, establishing, and the like.
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As used herein, a phrase referring to “at least one of” a list
of items refers to any combination of those items, including
single members. As an example, “at least one of a, b, or ¢ is
intended to cover a, b, ¢, a-b, a-c, b-c, and a-b-c.

The various illustrative logical blocks, modules, and cir-
cuits described in connection with the present disclosure may
be implemented or performed with a general purpose proces-
sor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array
signal (FPGA) or other programmable logic device (PLD),
discrete gate or transistor logic, discrete hardware compo-
nents or any combination thereof designed to perform the
functions described herein. A general-purpose processor may
be a microprocessor, but in the alternative, the processor may
be any commercially available processor, controller, micro-
controller, or state machine. A processor may also be imple-
mented as a combination of computing devices, e.g., a com-
bination of a DSP and a microprocessor, a plurality of
microprocessors, one or more mMicroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

The steps of a method or algorithm described in connection
with the present disclosure may be embodied directly in hard-
ware, in a software module executed by a processor, or in a
combination of the two. A software module may reside in any
form of storage medium that is known in the art. Some
examples of storage media that may be used include random
access memory (RAM), read only memory (ROM), flash
memory, EPROM memory, EEPROM memory, registers, a
hard disk, a removable disk, a CD-ROM and so forth. A
software module may comprise a single instruction, or many
instructions, and may be distributed over several different
code segments, among different programs, and across mul-
tiple storage media. A storage medium may be coupled to a
processor such that the processor can read information from,
and write information to, the storage medium. In the alterna-
tive, the storage medium may be integral to the processor.

The methods disclosed herein comprise one or more steps
or actions for achieving the described method. The method
steps and/or actions may be interchanged with one another
without departing from the scope of the claims. In other
words, unless a specific order of steps or actions is specified,
the order and/or use of specific steps and/or actions may be
modified without departing from the scope of the claims.

The functions described may be implemented in hardware,
software, firmware, or any combination thereof. If imple-
mented in hardware, an example hardware configuration may
comprise a processing system in a device. The processing
system may be implemented with a bus architecture. The bus
may include any number of interconnecting buses and bridges
depending on the specific application of the processing sys-
tem and the overall design constraints. The bus may link
together various circuits including a processor, machine-
readable media, and a bus interface. The bus interface may be
used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be
used to implement signal processing functions. For certain
aspects, a user interface (e.g., keypad, display, mouse, joy-
stick, etc.) may also be connected to the bus. The bus may also
link various other circuits such as timing sources, peripherals,
voltage regulators, power management circuits, and the like,
which are well known in the art, and therefore, will not be
described any further.

The processor may be responsible for managing the bus
and general processing, including the execution of software
stored on the machine-readable media. The processor may be
implemented with one or more general-purpose and/or spe-
cial-purpose processors. Examples include microprocessors,
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microcontrollers, DSP processors, and other circuitry that can
execute software. Software shall be construed broadly to
mean instructions, data, or any combination thereof, whether
referred to as software, firmware, middleware, microcode,
hardware description language, or otherwise. Machine-read-
able media may include, by way of example, RAM (Random
Access Memory), flash memory, ROM (Read Only Memory),
PROM (Programmable Read-Only Memory), EPROM
(Erasable Programmable Read-Only Memory), EEPROM
(Electrically Erasable Programmable Read-Only Memory),
registers, magnetic disks, optical disks, hard drives, or any
other suitable storage medium, or any combination thereof.
The machine-readable media may be embodied in a com-
puter-program product. The computer-program product may
comprise packaging materials.

In a hardware implementation, the machine-readable
media may be part of the processing system separate from the
processor. However, as those skilled in the art will readily
appreciate, the machine-readable media, or any portion
thereof, may be external to the processing system. By way of
example, the machine-readable media may include a trans-
mission line, a carrier wave modulated by data, and/or a
computer product separate from the device, all which may be
accessed by the processor through the bus interface. Alterna-
tively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as
the case may be with cache and/or general register files.

The processing system may be configured as a general-
purpose processing system with one or more microprocessors
providing the processor functionality and external memory
providing at least a portion of the machine-readable media, all
linked together with other supporting circuitry through an
external bus architecture. Alternatively, the processing sys-
tem may be implemented with an ASIC (Application Specific
Integrated Circuit) with the processor, the bus interface, the
user interface, supporting circuitry, and at least a portion of
the machine-readable media integrated into a single chip, or
with one or more FPGAs (Field Programmable Gate Arrays),
PLDs (Programmable Logic Devices), controllers, state
machines, gated logic, discrete hardware components, or any
other suitable circuitry, or any combination of circuits that
can perform the various functionality described throughout
this disclosure. Those skilled in the art will recognize how
best to implement the described functionality for the process-
ing system depending on the particular application and the
overall design constraints imposed on the overall system.

The machine-readable media may comprise a number of
software modules. The software modules include instructions
that, when executed by the processor, cause the processing
system to perform various functions. The software modules
may include a transmission module and a receiving module.
Each software module may reside in a single storage device or
be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a
hard drive when a triggering event occurs. During execution
of the software module, the processor may load some of the
instructions into cache to increase access speed. One or more
cache lines may then be loaded into a general register file for
execution by the processor. When referring to the functional-
ity of a software module below, it will be understood that such
functionality is implemented by the processor when execut-
ing instructions from that software module.

If implemented in software, the functions may be stored or
transmitted over as one or more instructions or code on a
computer-readable medium. Computer-readable media
include both computer storage media and communication
media including any medium that facilitates transfer of a
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computer program from one place to another. A storage
medium may be any available medium that can be accessed
by a computer. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to carry or store desired program
code in the form of instructions or data structures and that can
be accessed by a computer. Also, any connection is properly
termed a computer-readable medium. For example, if the
software is transmitted from a website, server, or other remote
source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as
infrared (IR), radio, and microwave, then the coaxial cable,
fiber optic cable, twisted pair, DSL, or wireless technologies
such as infrared, radio, and microwave are included in the
definition of medium. Disk and disc, as used herein, include
compact disc (CD), laser disc, optical disc, digital versatile
disc (DVD), floppy disk, and Blu-ray® disc where disks
usually reproduce data magnetically, while discs reproduce
data optically with lasers. Thus, in some aspects computer-
readable media may comprise non-transitory computer-read-
able media (e.g., tangible media). In addition, for other
aspects computer-readable media may comprise transitory
computer-readable media (e.g., a signal). Combinations of
the above should also be included within the scope of com-
puter-readable media.

Thus, certain aspects may comprise a computer program
product for performing the operations presented herein. For
example, such a computer program product may comprise a
computer readable medium having instructions stored (and/
or encoded) thereon, the instructions being executable by one
or more processors to perform the operations described
herein. For certain aspects, the computer program product
may include packaging material.

Further, it should be appreciated that modules and/or other
appropriate means for performing the methods and tech-
niques described herein can be downloaded and/or otherwise
obtained by a device as applicable. For example, such a
device can be coupled to a server to facilitate the transfer of
means for performing the methods described herein. Alterna-
tively, various methods described herein can be provided via
storage means (e.g., RAM, ROM, a physical storage medium
such as a compact disc (CD) or floppy disk, etc.), such that a
device can obtain the various methods upon coupling or pro-
viding the storage means to the device. Moreover, any other
suitable technique for providing the methods and techniques
described herein to a device can be utilized.

It is to be understood that the claims are not limited to the
precise configuration and components illustrated above. Vari-
ous modifications, changes and variations may be made in the
arrangement, operation and details of the methods and appa-
ratus described above without departing from the scope of the
claims.

The invention claimed is:

1. A method of learning in a neural network, comprising:

determining an uncertainty associated with a first pre-syn-
aptic spike time of a first neuron model for a pattern to be
learned; and

determining a delay based on the uncertainty, such that the
delay added to a second pre-synaptic spike time of the
first neuron model results in a causal margin of time
between the delayed second pre-synaptic spike time and
a post-synaptic spike time of a second neuron model.

2. The method of claim 1, further comprising adding the

delay to the second pre-synaptic spike time of the first neuron
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model, wherein the second pre-synaptic spike time is subse-
quent to the first pre-synaptic spike time.

3. The method of claim 1, further comprising:

determining another uncertainty associated with a third

pre-synaptic spike time of a third neuron model for the
pattern to be learned; and

determining another delay based on the other uncertainty,

such that the other delay added to a fourth pre-synaptic
spike time of the third neuron model results in another
causal margin of time between the delayed fourth pre-
synaptic spike time and the post-synaptic spike time of
the second neuron model.

4. The method of claim 3, further comprising adding the
other delay to the fourth pre-synaptic spike time of the third
neuron model, wherein the fourth pre-synaptic spike time is
subsequent to the third pre-synaptic spike time.

5. The method of claim 1, wherein the margin is a function
of the uncertainty.

6. The method of claim 1, wherein the uncertainty com-
prises a range of pre-synaptic spike timing with defined
bounds.

7. The method of claim 1, wherein the uncertainty com-
prises a probability distribution and wherein determining the
delay comprises calculating the delay based on the probabil-
ity distribution to achieve a desired probability of having the
delayed second pre-synaptic spike time occur before the post-
synaptic spike time.

8. The method of claim 1, wherein determining the uncer-
tainty comprises determining the uncertainty directly from
multiple instances of the pattern.

9. The method of claim 1, wherein determining the uncer-
tainty comprises observing different variations of the pattern
and wherein determining the delay comprises adjusting the
delay based on each of the observed variations.

10. The method of claim 9, wherein the first pre-synaptic
spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

decreasing the delay to increase the margin if the post-

synaptic spike time occurs within a first time threshold
of'the delayed first pre-synaptic spike time; and
increasing the delay to decrease the margin if the post-
synaptic spike time occurs more than a second time
threshold after the delayed first pre-synaptic spike time.

11. The method of claim 9, wherein the first pre-synaptic
spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

increasing the delay to decrease the margin if the delayed

first pre-synaptic spike time occurs substantially before
the post-synaptic spike time; and

decreasing the delay to increase the margin if the delayed

first pre-synaptic spike time does not occur substantially
before the post-synaptic spike time.

12. The method of claim 1, wherein the uncertainty com-
prises at least one of a synaptic weight change amount, a
derivative of a sign of a synaptic weight change, or an accu-
mulated synaptic weight change, for a synapse between the
first and second neuron models.

13. The method of claim 1, further comprising determining
a synaptic weight of a synapse between the first and second
neuron models based on the uncertainty.

14. The method of claim 1, further comprising using the
delay to adjust an expected time of a pre-synaptic spike for the
first neuron model relative to another expected time of
another pre-synaptic spike for a third neuron model.

15. The method of claim 1, wherein determining the delay
comprises selecting a synapse with the delay from among a
plurality of synapses with different delays.
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16. An apparatus for learning in a neural network, compris-
ing:

a processing system configured to:

determine an uncertainty associated with a first pre-
synaptic spike time of a first neuron model for a pat-
tern to be learned; and

determine a delay based on the uncertainty, such that the
delay added to a second pre-synaptic spike time of the
first neuron model results in a causal margin of time
between the delayed second pre-synaptic spike time
and a post-synaptic spike time of a second neuron
model.

17. The apparatus of claim 16, wherein the processing
system is further configured to add the delay to the second
pre-synaptic spike time of the first neuron model and wherein
the second pre-synaptic spike time is subsequent to the first
pre-synaptic spike time.

18. The apparatus of claim 16, wherein the processing
system is further configured to:

determine another uncertainty associated with a third pre-

synaptic spike time of a third neuron model for the
pattern to be learned; and

determine another delay based on the other uncertainty,

such that the other delay added to a fourth pre-synaptic
spike time of the third neuron model results in another
causal margin of time between the delayed fourth pre-
synaptic spike time and the post-synaptic spike time of
the second neuron model.

19. The apparatus of claim 18, wherein the processing
system is further configured to add the other delay to the
fourth pre-synaptic spike time of the third neuron model and
wherein the fourth pre-synaptic spike time is subsequent to
the third pre-synaptic spike time.

20. The apparatus of claim 16, wherein the margin is a
function of the uncertainty.

21. The apparatus of claim 16, wherein the uncertainty
comprises a range of pre-synaptic spike timing with defined
bounds.

22. The apparatus of claim 16, wherein the uncertainty
comprises a probability distribution and wherein the process-
ing system is configured to determine the delay by calculating
the delay based on the probability distribution to achieve a
desired probability of having the delayed second pre-synaptic
spike time occur before the post-synaptic spike time.

23. The apparatus of claim 16, wherein the processing
system is configured to determine the uncertainty directly
from multiple instances of the pattern.

24. The apparatus of claim 16, wherein the processing
system is configured to determine the uncertainty by observ-
ing different variations of the pattern and wherein the pro-
cessing system is configured to determine the delay by adjust-
ing the delay based on each of the observed variations.

25. The apparatus of claim 24, wherein the first pre-synap-
tic spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

decreasing the delay to increase the margin if the post-

synaptic spike time occurs within a first time threshold
of the delayed first pre-synaptic spike time; and
increasing the delay to decrease the margin if the post-
synaptic spike time occurs more than a second time
threshold after the delayed first pre-synaptic spike time.

26. The apparatus of claim 24, wherein the first pre-synap-
tic spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

increasing the delay to decrease the margin if the delayed

first pre-synaptic spike time occurs substantially before
the post-synaptic spike time; and
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decreasing the delay to increase the margin if the delayed
first pre-synaptic spike time does not occur substantially
before the post-synaptic spike time.

27. The apparatus of claim 16, wherein the uncertainty
comprises at least one of a synaptic weight change amount, a
derivative of a sign of a synaptic weight change, or an accu-
mulated synaptic weight change, for a synapse between the
first and second neuron models.

28. The apparatus of claim 16, wherein the processing
system is further configured to determine a synaptic weight of
a synapse between the first and second neuron models based
on the uncertainty.

29. The apparatus of claim 16, wherein the processing
system is further configured to use the delay to adjust an
expected time of a pre-synaptic spike for the first neuron
model relative to another expected time of another pre-syn-
aptic spike for a third neuron model.

30. The apparatus of claim 16, wherein the processing
system is configured to determine the delay by selecting a
synapse with the delay from among a plurality of synapses
with different delays.

31. An apparatus for learning in a neural network, compris-
ing:

means for determining an uncertainty associated with a

first pre-synaptic spike time of a first neuron model for a
pattern to be learned; and

means for determining a delay based on the uncertainty,

such that the delay added to a second pre-synaptic spike
time of the first neuron model results in a causal margin
of time between the delayed second pre-synaptic spike
time and a post-synaptic spike time of a second neuron
model.

32. The apparatus of claim 31, further comprising means
for adding the delay to the second pre-synaptic spike time of
the first neuron model, wherein the second pre-synaptic spike
time is subsequent to the first pre-synaptic spike time.

33. The apparatus of claim 31, further comprising:

means for determining another uncertainty associated with

a third pre-synaptic spike time of a third neuron model
for the pattern to be learned; and

means for determining another delay based on the other

uncertainty, such that the other delay added to a fourth
pre-synaptic spike time of'the third neuron model results
in another causal margin of time between the delayed
fourth pre-synaptic spike time and the post-synaptic
spike time of the second neuron model.

34. The apparatus of claim 33, further comprising means
for adding the other delay to the fourth pre-synaptic spike
time of the third neuron model, wherein the fourth pre-syn-
aptic spike time is subsequent to the third pre-synaptic spike
time.

35. The apparatus of claim 31, wherein the margin is a
function of the uncertainty.

36. The apparatus of claim 31, wherein the uncertainty
comprises a range of pre-synaptic spike timing with defined
bounds.

37. The apparatus of claim 31, wherein the uncertainty
comprises a probability distribution and wherein the means
for determining the delay is configured to calculate the delay
based on the probability distribution to achieve a desired
probability of having the delayed second pre-synaptic spike
time occur before the post-synaptic spike time.

38. The apparatus of claim 31, wherein the means for
determining the uncertainty is configured to determine the
uncertainty directly from multiple instances of the pattern.

39. The apparatus of claim 31, wherein the means for
determining the uncertainty is configured to observe different
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variations of the pattern and wherein the means for determin-
ing the delay is configured to adjust the delay based on each
of the observed variations.

40. The apparatus of claim 39, wherein the first pre-synap-
tic spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

decreasing the delay to increase the margin if the post-

synaptic spike time occurs within a first time threshold
of the delayed first pre-synaptic spike time; and
increasing the delay to decrease the margin if the post-
synaptic spike time occurs more than a second time
threshold after the delayed first pre-synaptic spike time.

41. The apparatus of claim 39, wherein the first pre-synap-
tic spike time is delayed by a previously determined delay and
wherein adjusting the delay comprises:

increasing the delay to decrease the margin if the delayed

first pre-synaptic spike time occurs substantially before
the post-synaptic spike time; and

decreasing the delay to increase the margin if the delayed

first pre-synaptic spike time does not occur substantially
before the post-synaptic spike time.

42. The apparatus of claim 31, wherein the uncertainty
comprises at least one of a synaptic weight change amount, a
derivative of a sign of a synaptic weight change, or an accu-
mulated synaptic weight change, for a synapse between the
first and second neuron models.

43. The apparatus of claim 31, further comprising means
for determining a synaptic weight of a synapse between the
first and second neuron models based on the uncertainty.

44. The apparatus of claim 31, further comprising means
for using the delay to adjust an expected time of a pre-synap-
tic spike for the first neuron model relative to another
expected time of another pre-synaptic spike for a third neuron
model.

45. The apparatus of claim 31, wherein the means for
determining the delay is configured to select a synapse with
the delay from among a plurality of synapses with different
delays.

46. A computer program product for learning in a neural
network, comprising a computer-readable medium compris-
ing instructions executable to:

determine an uncertainty associated with a first pre-synap-

tic spike time of a first neuron model for a pattern to be
learned; and

determine a delay based on the uncertainty, such that the

delay added to a second pre-synaptic spike time of the
first neuron model results in a causal margin of time
between the delayed second pre-synaptic spike time and
a post-synaptic spike time of a second neuron model.

47. The computer program product of claim 46, further
comprising instructions executable to add the delay to the
second pre-synaptic spike time of the first neuron model,
wherein the second pre-synaptic spike time is subsequent to
the first pre-synaptic spike time.

48. The computer program product of claim 46, further
comprising instructions executable to:

determine another uncertainty associated with a third pre-

synaptic spike time of a third neuron model for the
pattern to be learned; and

determine another delay based on the other uncertainty,

such that the other delay added to a fourth pre-synaptic
spike time of the third neuron model results in another
causal margin of time between the delayed fourth pre-
synaptic spike time and the post-synaptic spike time of
the second neuron model.

49. The computer program product of claim 48, further
comprising instructions executable to add the other delay to
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the fourth pre-synaptic spike time of the third neuron model,
wherein the fourth pre-synaptic spike time is subsequent to
the third pre-synaptic spike time.

50. The computer program product of claim 46, wherein
the margin is a function of the uncertainty.

51. The computer program product of claim 46, wherein
the uncertainty comprises a range of pre-synaptic spike tim-
ing with defined bounds.

52. The computer program product of claim 46, wherein
the uncertainty comprises a probability distribution and
wherein determining the delay comprises calculating the
delay based on the probability distribution to achieve a
desired probability of having the delayed second pre-synaptic
spike time occur before the post-synaptic spike time.

53. The computer program product of claim 46, wherein
determining the uncertainty comprises determining the
uncertainty directly from multiple instances of the pattern.

54. The computer program product of claim 46, wherein
determining the uncertainty comprises observing different
variations of the pattern and wherein determining the delay
comprises adjusting the delay based on each of the observed
variations.

55. The computer program product of claim 54, wherein
the first pre-synaptic spike time is delayed by a previously
determined delay and wherein adjusting the delay comprises:

decreasing the delay to increase the margin if the post-

synaptic spike time occurs within a first time threshold
of'the delayed first pre-synaptic spike time; and
increasing the delay to decrease the margin if the post-
synaptic spike time occurs more than a second time
threshold after the delayed first pre-synaptic spike time.
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56. The computer program product of claim 54, wherein
the first pre-synaptic spike time is delayed by a previously
determined delay and wherein adjusting the delay comprises:

increasing the delay to decrease the margin if the delayed
first pre-synaptic spike time occurs substantially before
the post-synaptic spike time; and

decreasing the delay to increase the margin if the delayed
first pre-synaptic spike time does not occur substantially
before the post-synaptic spike time.

57. The computer program product of claim 46, wherein
the uncertainty comprises at least one of a synaptic weight
change amount, a derivative of a sign of a synaptic weight
change, or an accumulated synaptic weight change, for a
synapse between the first and second neuron models.

58. The computer program product of claim 46, further
comprising instructions executable to determine a synaptic
weight of a synapse between the first and second neuron
models based on the uncertainty.

59. The computer program product of claim 46, further
comprising instructions executable to use the delay to adjust
an expected time of a pre-synaptic spike for the first neuron
model relative to another expected time of another pre-syn-
aptic spike for a third neuron model.

60. The computer program product of claim 46, wherein
determining the delay comprises selecting a synapse with the
delay from among a plurality of synapses with different
delays.



